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I. INTRODUCTION

Since World War II, chaff, which is a code name for a col-
lection of thousands of linear resonant dipoles, has been used as
an effective passive ECM against pertinent threat radar systems,
One generally recognizes at least two significant roles for chaff;
first, self-protection as in the case of aircraft against fire con-
trol radars, and second, in situations where initially sown dipole
corridors saturate radar receivers and the corridors are subse-
quently utilized as penetration aids. Heretofore, the echoing
area or the radar cross section of a chaff cloud has been calcu-
lated by multiplying the number of dipoles by the so-called "tumble
average radar cross-section" of a single dipole. Estimates based
on this simple model have been poor. Experimental measurements
are between 2-50% of the theoretical value, depending upon the
situation. Furthermore, once certain dipole densities have been
reached doubling or even quadrupling the number of dipoles show
very little increase in echo area. The significance of these dis-
crepancies 1s that the simple tumble average modal is not satis-
factory and it is high tiwe one undertakes a more realistic study
of the electromaanetic scatterina and attenuation properties of
chaff clouds. To fulfill the requirements, the ElectroScience
Laboratory under sponsorship of the Air Force Avionics Laboratory
has undertaken a comprehensive study of the electromagnetic behavior
of chaff clouds. The effort has been conveniently divided into three
phases of increasing complexity. These are

s © . e mm s dm—

1. Scattering behavior of single length, i.e., one
frequency, dipoles with moderate mutual coupling
between the elements.

2. Same as above but wit: ¢lost eoupling, even touching,

3. Clouds of different dipzle lengths, i.e., multiple
frequency clouds

The work performed under this contract emphasized (1), with some
effort devoted to (2) and (3).

The scattering and extinction behavior of large ensembles of
particles has long been a subject of study in such diverse dis-
ciplines as acoustics, quantum mechanics and electromagnetics [1].
Most work is based upon certain assumptions which make the problem
analytically tractable, such as very small particle size, large
spacing, no coupling or forward-neighbor coupling only, etc, In
their domains of validity, mathematical models based on such
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assumptions have indeed been useful in treating particulate media.

In the case of a chaff cloud, however, two features complicate the

problem: the particles are linear dipoles of lengths A/2 (resonant)

or greater and therefore cannot be considered sinall; and during the

3 [ early history of the cloud, before it fully blooms, these dipoles

3 are closely spaced and strongly coupled electromagnetically.

3 Furthermore, blooming implies non-stationary cloud statistics, and

1 packaging configuration, dispensing technique and atmospheric con-

‘ ditions all influence the electromagnetic behavior of the cloud in

- time. These and many other problems face the investigator who
wishes to answer such questions as, "How many dipoles is optimum
for a cloud in a given tactical situation.” "Is there a par-

i ticular shape or density or density distribution of a cloud that

is preferred?" "What are the expected scintillation rates?" "Can

.. one make a cloud bloom faster electromagnetically?" These

¥ questions cannot be answered until we understand how a medium

; composed of many strongly resonant scatterers, which may be

closely coupled, interacts with a radar wave, that is, until we

can answer the basic question, "How does a chaff cloud scatter?”

Mary attempts have been made in the past to answer the above
question, usually to obtain the spatial average backscatter at
resonance for a cloud of dipoles "frozen" in time [2,3]. Ex-
tensions were made to include nonrescnant dipoles and dipoles
with preferred orientations [4] as well as the dynamics of the
dipoles [5,6,7,8]. In all instances, however, the effects of
coupling among elements were not included in the analysis due to
ensuing computational difficulties. Only recently has it become
possible to account for coupling, at least on a limited basis, by
use of large digital computer techniques [9,10,11]. Although we
shall never be able (or ever wish) to account for all inter-
actions among the millions of dipoles in a typical chaff cloud,
the present capability of handling 250 resonant dipoles gives
hope of accounting for sufficient numbers of interactions to ob-
: tain an accurate statistical description of the behavior of any
B cloud.

¥

The purpose of our work was to bring the computer to bear on
the chaff cloud problem in order to investigate the limits of
simplifying approximations, to support, refine, or replace simple
models, to obtain and interpret statistical data, and, basically,
to better understand the scattering mechanism. This final report
describes resuits developed over the three year time span of the
contract. Because the effort extended over such a long period,
many of the earlier methods for generating scattering data were
superceded by improved methods, but the results still remain valid
and valuable for the inferences that can be made from them. Thus,
many of these early results, reported in Reference 12, are pre-
sented here as well to provide a complete and integrated overview
of the effort.




ke 2~ The main chapter of this repori, entitled, Technical Discussion
3 ] and Results, is divided into several sections. In Section A we

3 i {1 discuss the concept of a frozen cloud as a useful chaff model in

3 the absence of realistic Lime varying data; in Section B (and

< Appendix A) are discussed the statistical quantities we have used

F ¢ j to describe the radar cross section of a chaff cloud. Section C is
b
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a lengthy one which itself is divided into several parts: Introductory
Remarks, which is intended to provide a very brief and general dis-
cussion of the method of moments (more details appear in Appendix B)
by which the integral equation describing the electromagnetic chaff
interacticn problem is reduced to a set of simultaneous algebraic
(matrix) equations suitable for processing by digital computer;
Direct Methods, which describes the most commonly applied techniques
for solving the above-mentioned matrix equations, such as the method
of Crout; Sparse Matrix Methods, which describes special algorithms
which are useful if the matrix is large and is sparse, i.e., has
many zeros in it; i.,e., weak coupling between chaff elements, and
Indirect, or Iterative, Methods, which appear to be useful for large
matrices, i.e., large numbers of chaff elements, without the as-
sumpticn of sparsity. Typical resuits, as derived by each method,
are presented in appropriate sections, together with a discussion
and conclusions inferred from those results. In some instances

F verifying experimental data are also given to support the com-

LJ putations. Computer programs used to generate the results, either
by the direct, sparse or iterative methods, are documented in Ap-
pendices D, E and F, respectively.
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= The primary emphasis during the contract was the irvestigation

A of clouds of resonant (half-wave) dipoles which were nut "too

b i closely" spaced. Some effort was expended to better define what

g "too closely" means in terms of the computer models used in our

work, and this is discussed in Section D of Chapter II, Section

( E is addressed to chaff clouds containing multi-length elementc

j for purposes of broadbanding the chaff echo to meet threats over

; a range of frequencies. Section F is devoted to experimental

resuits. Although the bulk effort was primarily computational,

some experimental data were recorded to verify the computed

4 results and to observe certain scattering and extinction behaviors
of moving dipoles in numbers much greater than can be handled by 4

L computer (~8000). These and other experimental efforts are reported -

it in this section. 1
Section G of Chapter II is on a topic somewhat divorced from ;
:] that of chaff cloud scattering characteristics. In it we present

an initial effort to investigate the aircraft-chaff cloud-tracking

. missile intercept problem. Many of the parameters of this problem 4

.! are unknown, such as location and motion of scattering centers k.

from a particular aircraft as a function of its maneuvers, the ;
precise aerodynamic and electromagnetic behavior of chaff clouds 4

] spawned by the aircraft, and the range and tracking behavior of K




the missile radars under such complex returns. Although these }
quantities were assumed in this study, it is anticipated that the 1
approaches suggested here will become very useful for computerized !}5
simulation studies when more accurate input data become available 3
through diverse research programs. More detail is given in Appendix G.

Chapter 111 concludes the body of the report with an overall
discussion of our findings and suggestions for future effort.

Six appendixes were already alluded to. One additional appendix (C) 'f 4
describes the Gaussianly distributed density of dipoles employed
throughout most of the contract. In the late stages of our work
uniformly dense ~{ouds were preferred and their generation is '
briefly described as well. /
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I1. TECHNICAL DISCUSSION AND RESULTS
A. The Frozen Chaff Cloud Model

It is appropriate to discuss the first fundamental assumption
upon which all our work, be it by computer or by laboratory experi-
ment, rests. This is the assumption of the "frozen" chaff cloud
model .

Scattering by a real chaff cloud is a stochastic process in
the independent variable, time. At any given instant not only
do we find the dipoles randomly positioned and oriented, but over
a short interval of time they move and give rise to random fluc-
tuations in the cross section (be it monostatic, bistatic, or
foreward). Moreover, with the passage of time, the cloud evolves
from a dense to a tenuous conglomerate of dipoles so that, viewed
over a long interval, the stochastic scattering process appears
nonstationary, i.e., its statistics change with time.

In order to approximate the lower order statistics associated
with a certain instant of time, one might consider an ensemble of
similarly evolving clouds and take averages over this ensemble at
the time of interest. This viewpoint leads us to the so called
ensemble model, in which time is stopped at regular intervals, a
"snapshot" taken of each cloud in the ensemble of clouds, and the
ensemble average of backscatter calculated for each time sample.
As time progresses and the cloud blooms, we assume the ensemble
averages from each successive set of "snapshots" change and
faithfully characterize the time average's behavior of a random
cloud in evolution.

The generation of a large ensemble of ciouds and the com-
putation of ensemble average backscatter, for exampie, as the
clouds evolve in time is an expensive process, especially if the
clouds contain many dipoles. Thus there arises the proposition,
instead of generating many different clouds (requiring the cal-
culation of mutual impedances among dipoles for each new cloud)
to form an ensemble over which to average, can we more efficiently
obtain an equivalent ensemble average by viewing the same cloud
(requiring the calculation of mutual impedances among dipoles
only once? at many different aspects, then spatially averaging the
back scattering cross section over all these aspect angles? As
will be seen, the answer appears to be a qualified affirmative in
that the spatial average backscattering cross sections for similar
(i.e., same number of dipoles with same average spacing) but dif-
ferent clouds do differ in general, so that it is not sufficient
to spatially average only gpe cloud return and accept that as a
good equivalent ensemble average. One must generate an ensemble
of clouds, obtain a spatial average backscattering cross section
for each and then obtain an ensemble average of these spatial
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averages. The point being that this latter ensemble is smaller
than the former, thereby demanding fewer calculations of mutual
impedances, etc. with resulting enhanced efficiency of computation
(at least for large clouds). In all our work we obtain ensemble
averages using this modified ensemble model, which we call the
frozen model.
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Going one step further in the search for computational ef- }
ficiency, there arises the proposition, can we illuminate one or ]
a few similar clouds from gne aspect (requiring the calculation of "{
induced currents only once for each cloud generated) and average
the bistatic scattering cross section over a range of bistatic
angles and expect this average to be simply related to the
ensemble average of backscattering cross section? Or further,
can one relate the average of total scattering cross section to
the ensemble average of baciscattering cross section? The )4 3
answer to ooth these propositions appears to be negative, or at 14
least the relationships are not clear to us from the data we ;
have generated.

B, Representative Cloud Characteristics

In the previous section, we discussed the frozen model of a £
chaff cloud as a substitute for the more complex time-varying X
model, under the assumption that the scattering characteristics -
derived from each model agree. The characteristics which we have
in mind are, of course, statistical in nature and should be dis~
cussed more fully so that the reader understands the results
presented later. , {

Viewed in time, the monostatic or bistatic echo from a cloud
consists of an average return plus a scintillation term, The "
average is expected to change as the cloud blooms - a symptom of ;i
non-stationarity - but if its rate of change is slow with respect
to the scintillation rate, the scattering process might be con-
sidered stationary over small time intervals. With each such j
time interval, therefore, are associated a mean value, i.e., the
time average radar cross section, a variance, i.e., the mean square :
of the time-varying component of the radar cross section, and a 1
frequency spectrum of the cross section. The totality of all such J
sets of quantities taken during selected time intervals constitute
a partial statistical description of the cloud behavior. ‘

By assuming a frozen model, appropriate to one of the above- L
mentioned intervals of time (i.e., with average dipole spacing E
appropriate to the time interval in the evolution of a blooming 12;
c]oudg. we substitute viewing angle for time as the independent ;j

variable and obtain a spatial average radar cross section. As
mentioned earlier, it turns out that this spatial average radar
cross section differs from cloud-to-cloud, so in the frozen cloud
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model we assume an ensemble of clouds and obtain a distribution of
spatial average radar cross sections. The ensemble average of this
distribution of spatial averages is assumed to be equivalent to
the time average radar cross section for the time interval of
interest. From this distribution we also obtain a variance of the
spatial average, a quantity which has no obvious meaning in the
time-averaging process, but is useful for estimating a confidence
level for the ensemble average cross section obtained from the
frozen model. It may be that the variance of the spatial average
is simply related to the variance of the random time process,

but at present we have no supporting evidence since no time-
varying clouds have been generated.

The frequency spectrum of the frozen model is not expected
to equal that of the time-varying cloud; it is useful, however,
for estimating the minimum number of aspect angles at which to view

~ the clouds in the frozen model, since a number smaller than this

causes obvious aliasing of the spectrum.

A more quantitative discussion of the statistical notions and
notation employed in later sections of this report are presented in
Appendix A.

C. Computer-Generation of Scattering Data

1. Introductory Remarks

The second fundamental assumption underlying this work is that
the generation of volumes of scattering data necessary for a
statistical study of frozen models ultimately is more efficient,
convenient and inexpensive by means of a computer than by laboratory
experiment. Experimental data were considered essential to the
contract, but primarily as verification of corresponding computed
data. We leave discussion of the experimental aspects to a later
section and here elaborate on the computer-generation of scattering
data.

The computer-solution of scattering by a cloud of coupled
resonant dipoles is based on the reaction matching technique of
Richmond [9]. This is a moment method of the Galerkin type, i.e.,
in which the testing functions and basis functions are identical.
It assumes that each dipole is divided into P segments (P = 2 has
been found to be satisfactory for the configurations discussed in
this report), and a piecewise sinusoidal current of unknown ampli-
tude and phase is assumed to flow on each segment. The coupling
(i.e., mutual impedance) between each such segment of current and
any other segment (or itself) can be expressed in the form of a
reaction integral (i.e., an inner product integral) from which
the method takes its name. The significant fact which makes the
reaction matching technique particularly attractive is that all

V
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these reaction integrals may be evaluated in closed form, thereby
permitting the rapid determination of all the elements of a N x N
impedance matrix EZ] (representing all self-and-mutual impedances
among the M'dipoles in a cloud) whose inversion yields the desired
dipole currents (1) induced by a plane wave (E) incident from

any angle. This technique is well established and has been used

to obtain scattering data for many wire obstacles. A more detailed
description of the reaction matching technique is given in Appendix
B.

With the assurance that the computer-generated scattering data
are within the tolerance of experimental data, we turn our attention
to the simulation of chaff clouds by the frozen model. Early in
the program the N dipoles in a typical cloud were assumed to be
resonant in free space, randomly oriented according to & spherical
probability density function (i.e., all orientations equally likely)
and randomly located according to a Gaussian radial density with
average spacing d/x between dipoles. This average spacing was
obtained by considering 76% of the N dipoles to be located within
a sphere of radius 2.056, where § is the standard deviation of the
aforementioned Gaussian radial distribution. The volume of this
sphere is equated to the volume of a cube which itself is sub-
divided iito 0.76N equal cubes, each of which is size d/Ax on an
edge an? §S considered to contain one dipole, yielding d/) =
3.62 N1/ 8/ X\, Appendix C contains the details of this in-
homogeneous cloud generation.

The aforegoing choice of a cloud tapering from a dense
central region to tenuous edge blending with free space seemed
logical in the beginning. An actual chaff cloud might be ex-
pected to display such an inhomogereity; furthermore, a uniformly
dense cloud, for high densities, might be expected to exhibit
a coherent scatter from the abrupt free space-cloud interface as
well as an incoherent part. Our choice of a tapered density re-
duces the coherent part, which is desirable since this part
would be dependent upon the exact shape of the cloud, which in
the actual case is unknown and changing with time. At the same
time, however, the tapered density suffers drawbacks. The
parameter which we used to describe the tightness of the dipoles,
d/x, or "average spacing”, is an average over a substantial part
of the cloud. The average spacings are much smaller than this
number near the cloud center and much larger closer to its
edge. As the program progressed, it became clear that it would
be better to assume clouds with uniform densities so that trends
in the various methods, such as the sparse matrix and the iterative,
could be correlated with respect to a more uniquely defined average
spacing (or density) parameter. The details of the homogeneous
cloud generation are contained in Appendix C.
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We state here once and for all that, except where noted, all
results appearing in this report are based on the Gaussian radial
distribution for the cloud. The reader will find uniformly dense
clouds assumed only in the section describing indirect methods.

2. Direct Methods

(a) Theoretical Considerations

As discussed above, and in more detail in Appendix II, the
electromagnetic scattering problem can be transformed via the
method of -moments into an N x N matrix equation of the form

(1) 1 =V

where the right hand vector V is known from the direction,
polarization, and strength of the known incident plane wave and
the elements of the Z matrix can all be calculated using
reaction matching. The problem is to determine the current
vector I, each component of which is the current I_ induced on
the nth chaff dipole. 5

A direct solution for nonsingular Z can be expressed in
terms of the inverse matrix Z-1; i.e.,

(2) L= 7k

However, the solution process may or may not include actual com-
putation of the inverse. Practical examples of solutions ex-
pressible in the form of Eq. (2) are Gaussian elimination and LU
decomposition. Both of these methods are based on triangulari-
zation of Z; Gaussian elimination yields one solution per
triangularization whereas, LU decomposition yields any number of
solutions for different right hand side vectors. LU decomposition
represents a class of compact methods including the Crout,
Doolittle and Choleskey methods [37] which do not require storage
of intermediate matrices during triargularization as does

Gaussian elimination. Final elements of the triangular form

are obtained by accumulation and when done in double precision
arithimetic and rounded to single precision before storage,
solutions by any of these methods will contain a minimum of
roundoff error. Solutions to certain electromagnetic problems
require repeated responses to variety of excitations. LU de-
composition methods are well suited to this requirement and are
probably the most widely used in electromagnetic computations,




Successful decomposition or factorization of a matrix is
based on the LU theorem. The theorem is stated as follows:
Let Zx represent the kth principal submatrix of Z, formed by
eliminating n-k rows and columns from Z. If

(3) det Z, # 0, k=1,2,:-en-1,

then there exist two unique triangular matrices L = [kij] and
U= [uiq], with L the unit lower triangular (i.e., ones on the main

diagonal and zeros above the diagonal) such that
(4) Z=1L1U
and
n
(5) det Z =TWu,. .

The U matrix in this case is the same upper triangular matrix ob-
tained by performing Gaussian elimination and L is related to

the sequence of matrices Mk, k=1,2,..-,n-1, which accomplished this
triangularization. Details of computing elements of L and U are

left to Appendix I of Reference 38. Equatior (1) can now be restated
in factored form as

(6) LuI=yv
and the solution is computed by setting \
(7) U1 =1

in Eq. (6) and solving the resulting triangular system for I by
forward substitution. This solution is then substituted back
into Eq. (7) and the final triangular system is solved by back-
ward substitution. These forward and backward substitutions are
the only calculations needed for sther solutions to the same sys-
tem with different E (excitation) vectors. The factored form of
Z defined by Eqs. (4) and (5) is referred to by Westlake [39] as
Doolittle decomposition. The familiar Crout decomposition as
described by Westlake performs lower triangularization on Z and
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U becomes unit upper triangular. Choleskey's method, or the
square-root method, requires Z to be at least symmetric. Fac-
torization in this case leads to the form

(8) Z =66

(T denotes tiranspose) with the determinant given by
§ 2

(9) det Z = 11:1; (9:5)°

Gaussian elimination along with the Crout and Doolittle methods
generally Eives better results when a column reordering strategy is
used on Z(k) to position the element of largest absolute magnitude
in the kth row in the pivotal position (diagonal) at the kth step
of the triangularization process. Choleskey's method, on the
other hand, does not require this repositioning strategy when ap-
plied to positive definite matrices. The EM problems treated in
this study result in complex symmetric (nonhermitian) matrices and
in general this partial positioning process should be included.
Experience has shown, however, that for most EM problems solved in
this manner, sufficient accuracy is obtained without pivoting in
spite of the indefiniteness of the coefficient matrix. Elements
along the main diagonal generally are larger in magnitude than the
off diagonal elements which no doubt contributes to this char-
acteristic.

The size of a particular computer's fast access memory along
with growth of rcundoff accumulation are inherent limitations of
these methods. The size problem can be overcome to a certiain extent.
However, unless precision is also improved, roundoff must eventually
obscure acceptable solutions. One method for studying conditions
which affect solution errors is to compute a relative error bound
for the solution algorithm being used. Relative error is ex-
pressed in the form

(10) Relative Error = Liﬁ:ﬁﬁj
I »

where I and I represent the exact and computed solutions,

respectively, to Eq. (1) and || .|| signifies an appropriate
vector norm. Definitions of useful vector and matrix norms
are given in Appendix C of Ref. [38].
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Error bounds naturally tend to be conservative and are often
considered useless for this reason. Nevertheless, bounds con-
sidered in proper perspective can yieid information otherwise
unavailable to the user. Computation of a bound based on the
number of unknowns (N), the algorithm, and the precision, may reveal
trends which can bring confidence or a note of caution into play
and is justified if only to indicate such a trend is possible when
pushing the limits of a particular machine's size and accuracy.
More discussion of condition numbers and error bounds appears
in Ref, [38].

(b) Calculated Results for Chaff Clouds

Using the computer routines based upon the method of Crout
and documented in Appendix II of Reference 12, clouds with N = 10,
15, 20, 25, 30, 50, 100, 150, 200 dipoles were considered for
average spacings, d/x = 0,5, 1.0, 1.5, 2,0. Not all combinations of
(N, d/2) were investigated equally intensively since computations
for larger N values are time-consuming and certain trends could be
discerned without them. Most work concentrated on clouds with
N < 30, and on the backscattering cross section. Figures 1-4 show
the average backscattering cross section <op> of the mth cloud in an
ensemble of M = 29 clouds in the frozen model, where 1 < m < M,
These figures give data for clouds containing up to N = 30 dipoles
and average spacings d/x = 0.5, 1.0, 1.5, 2.0. As expected, the
values of <op> distribute themselves over a range (note that where
the density of dots in Figs. 1-4 is high, they are plotted aside one
another), so it is appropriate to present an average value of the
<om>, Which we denote by <G>, This has been done in Figs. 5-8,
where <G> is represented by a point. For the cases, N = 10,30, which
were investigated more extensively, the ranges which enclose 95.45%
of all the values of <G> can be represented by a vertical line (ex-
tending from <G>-2 Spaan t0 <G> +2Smean), Where Spean is the standard
deviation of the distr1gution of <op>. The details of the distri-
butions of <op> are discussed more fully in Appendix I; here, it
suffices to say that these curves give some idea of the expected
cross section from a cloud of chaff with coupling as a function of
number of dipoles and average dipole spacing (i.e., dipole density).
In Figs. 1-8, each straight line represents the ideal case of no
coupling, in which case the average cross section of N dipoles is
expected to be simply N times <go>, the average cross section of a
single resonant dipole.* If the average cross section of a single
resonant dipole is defined to be the cross section of that dipole
averaged over all possible tumble angles, equally weighted (spherical

*Actually, this straight line is an approximation strictly valid for
uniform density clouds. However, for the non-uniform clouds
considered here, it is an extremely good approximation,

12
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probability density function for orientation), then <og> is equal
to about 1/5 times the maximum cross section of the dipole, or
<0g>20.15)¢. From these curves it is evident that with an average
spacing of d/a = 2.0, the curve N<ogp> fairly well predicts the
values of <o>, implying that coupling effects are weak and decoupled
theory may as well be applied. But as d/)» decreases below 2.0 the
values of <o> drops below those predicted by the curve N<o,> for

the decoupled dipoles. Although fewer clouds were investigated

for N > 30, the same trends persist, as indicated by Figs. 9 and 10,

Although most data generated were of backscattering cross L
section, some bistatic scattering cross sections were investigated ]
as well. Figures 11-14 present results for rather dense clouds p
(d/» & 0.59) and bistatic angles 8 = 0° (menostatic), 45°, 90°, 1
135° for vertical-to-vertical and vertical-to-horizontal polari-
zations. Computed data appear as circles and measured data appear
as solid dots. (The methods used to obtain the experimental data
are described below), Again, the straight lines N<gq(8)>
represent the ideal case of uncoupled elements, where <oq(8)> is
the tumble average bistatic cross section a single resonant dipole,
calculated according to the formula,

(11) <oo(8)> = 0.05A2[1+2 (cos oy €OS o + COS B sin oy sin ar)z]

where at and o, are the angles of the polarization vectors as
shown in the accompanying sketch. In every case, we observe the :
same phenomenon - coupling effects a decrease in average cross i
section for both polarization combinations and all bistatic
angles.
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To obtain the bistatic scattering data of Figs, 11«14 up to
800 polyfoam spheres, each containing a dipole, were enclosed in a
polyethelene bag which was rotated by means of strings. Horizontal
polarization was transmitted to minimize string reflections and as
the bag was rotated a cross section pattern was recorded and automatically
averaged. Between runs, the bag was jostled to form a new cloud
so thai a variance could be observed for the average return,

Figure 15 shows the calculated spatial average backscatter
as a function of frequency of four particular random clouds of
N = 30 dipoles each. In this figure, vertical-to-vertical polari-
zation is assumed and 2/x is the electrical length of each dipole
which is varied through the resonance region. The curves marked
N<og> is for the ideally decoupled case and the other curves are
for average spacings for each cloud of d/A = 2.0 and 0.5. As
expected, the closer spacing reduced the backscatter, but it does
not significantly change the frequency of resonance. This result
leads us to conclude that it is fruitless to seek a chaff cloud
which blooms to a higher value of radar cross section than ex-
pected early in its evolutionary history by cutting the dipoles
to any length other than the free space resonant length.

3. Sparse Matrix Methods
(a) Theoretical Considerations

In addition to the gathering of comput2d and measured data
to obtain averages of backscattering cross sections, some effort
has been directed at alternative methods for solving large matrix
equations. The reaction method of Richmond leads to kernel matrices
of the order N x N which effectively must be inverted by one method
or another. Using Crout-type methods just discussed and a large
scale computer limit N to about 250; if more dipoles than this are
of interest other methods must be sought to overcome the storage
and time problems. In this and the following section we discuss
two methods which we investigated - sparse matrix and iterative
techniques.

Before launching into a discussion of these techniques, it is
appropriate to enquire why cre is interested in larger numbers of
dipoles, especially since informaton concerning far scattered
data are more easily derived from smaller clouds. The answer lies
in the intent to characterize a chaff cloud by more than its
average cross section, in particular, to calculate the fields inside
a cloud as a function of depth of penetration and obtain some
insight to the extinction and phase shift incurred. In order to
obtain a substantial depth, it may be necessary to account for
more than 250 dipoles, in which case new compuicr methcds ire
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necessary. Such information would be useful for estimating the
thickness of a layer of dipoles beyond which additional dipoles
add very little to the average backscatter.

The solution to the problem of scattering from a cloud of
N dipoles involves a system of N equations in N unknowns. Each
of these equations contains N tarms. Since all N2 terms must be
stored, even large computer systems run out of fast-access memory
for relatively few (N < 300) dipoles. In order to study larger
clouds, some means of reducing the number of stored elements is
required.

The terms in the equations relate to the interaction (mutual
impedance) between pairs of dipoles in the cloud. For dipoles that
are widely separated or nearly perpendicular to each other, the
associated mutual impedance can become quite small. If some
threshold level is chosen for the magnitude of the mutual impedance
and all mutual impedances below this threshold are ignored (i.e.,
set to zero), an approximate solution to the scattering prohlem
may be obtained. The often-used assumption of completely in-
dependent dipoles is an extreme example of this type of approxi-
mation. Systems of linear equations of this type (i.e., where
each equation contains only a few terms) mey be solved by what are
known as sparse matrix methods.

Sparse matrix methods are similar to other techniques (e.gq.,
Crout, Gauss reduction), except that only non-zero terms are stored
and only operations involving non-zero terms are performed. Thus
they are faster and require less storage when applicable,

In order to determine whether such an approximate solution
can be used for studying chaff clouds, a few tests were run using
standard solution techniques (i.e., without implementing the time-
and storage-saving algorithms) for several values of the threshold
mentioned earlier. In this way the applicability of sparse matrix
techniques could be determined before effort was expended to
develop specialized computer programs.

Setting the threshold to a value equal to 10% of the magnitude
of the dipole self-impedance resulted in a satisfactory percentage
of zeros (nearly 80%) in the impedance matrix for several test
clouds. The bistatic scattering patterns of twenty thirty-dipole
clouds (with d/x = 0.5) were calculated using both the full im-
pedance matrix and the sparse matrix obtained with the 10% thresh-
old described above. Each pattern was averaged over 360° of
bistatic angle and for each cloud the average obtained using the
full matrix solution was compared with the average obtained using
the sparse matrix solution. The percentage error for each of the
twenty clouds is listed in Table I (where a + error means the
sparse matrix yielded an average higher than did the full matrix).
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The average error was 5.3% and the average absolute error was 6.8%,
well within tolerance levels of practical measurements.

From these calculations it appeared feasible to further de-
velop sparse matrix programs for use on chaff cloud scatter calcu-
lations.

TABLE 1

PERCENT ERROR IN BISTATIC AVERAGES CAUSED BY SETTING MUTUAL
IMPEDANCES BELOW (0.1) (211) TO ZERO.

-4.2 +5.3 + 2.9 +11.9 +8.7 -3.2
-7.7 +6.7 +10.0 +13.3 +13.8 +2.6
+10.2 H5.5 +4.8 + 846 + 4.3

Sparse matrix methods require that a special sciere be used
to index the stored elements of the matrix. Also most direct
methods of solving systems of linear equations operate on the
matrix to produce a new matrix which in general is not sparse even
though the original matrix was sparse. Sparse matrix methods require
that this new matrix be sparse as well. These two requirements
have been approached and fermulated in a variety of ways [40-45].

The approach used here is that given by Berry [44]. The off-
diagonal non-zero elements of the upper trianagular portion of the
matrix are stored consecutively in linear array U. The diagonal
elements (which are all non-zerc) are stored in a linear array D,
Two pointer arrays II and J are used to index the array U. II(K)
contains the starting location of row K in U and J contains the
column indices of the elements in the same order as the elements
as contained in U. An example given by Berry [44] should help
clarify this scheme. For the matrix Y given below, the arrays
would be as follows:

Yyu O Yi3 0 Y15

0 Yop Yoz Yoy O
'||" =

Y31 Y33 Y33 Y3 O

0 Yoo Y43 Yag O

Yo7 O 0 0 Y55
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o i

I1(1)

1]
pu—

J(0) =3 U(1) =y;;  D(1) = vy
I1(2) =3 9(2) =5 U(2) = yy5 D(2) = ¥,
I1(3) =5 J(3) =3 U(3) = y,, D(3) = ¥35
II(4) =6  J(4) =4 U4 =y, D(4) =y,
I1(5) =6 J(5) = 4 U(5) = .Y34 D(5) = _Y55

A specialized matrix decomposition known as the "square root
method" [46] is used to solve the system of equations. This
method is similar to those associated with the names Gauss,
Crout, Doolittle, Cholesky, Banachiewicz, etc. [47].

Before decomposition, the algorithm given by Barry is used
to determine a renumbering of the unknown (pivoting on the diagonal)
such that the number of non-zero elements in the auxiliary matrix
produced by the decomposition is reduced. The advantage of this
renumbering is easily seen in a couple of examples. Figure 16 shows
the structure of an 11 by 11 matrix and its auxiliary before re-
numbering. Crosses represent non-zero elements occuring in both
the Jsiriginal matrix and its auxiliary. Zeros represent non-zero
elements occuring only in the auxiliary matrix, i.e., non-zero
elements that were introduced by the decomposition. Blanks repre-
sent zero elements occuring in both the original matrix and its
auxiliary. Figure 17 shows the structure of the matrix after
renumbering and the structure of the auxiliary of this new matrix
in the same way. The renumbering used was as foliows:

original unknown no. 1 2 3 4 5 ¢ 7 8 9 10 N
new unknown no. 1 9 7 6 52 3 8 4 10 1

The structure of Fig. 17 may be obtained from that of Fig.
16 and the above table. For example: to generate the seventh
row of Fig. 17, first note that the seventh unknown in the re-
numbered system was the third unknown in the original system,
This means that the third row of the original matrix is the
seventh row of the new matrix. Columns have also been inter-
changed according to this same renumbering so that 233 - Z77.
To fincd the other elements in the new seventh row, acte ir Fig.
16 that the off-diagonal elements in row 3 are Z34, Zz6, and
Z3g and convert both subscripts as given in the table to obtain
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234 > Lygy L35 > 172, and Z3g + Z7g which is the structure shown in
Fig. 17,

Figures 18 and 19 show the structure of a 28 by 28 matrix
before and after renumbering in the same way.

The renumbering used in this case was as follows:
original 1 2 345 6 7 8 9 10 11 12 13 14
new 9 18 24 22 8 20 14 21 27 15 19 16 13 17

original 15 16 17 18 19 20 21 22 23 24 25 26 27 28
new 25 28 7 5 4 3 2 1 2 23 10 6 11 12

The number of non-zero elements occuring in the auxiliary matrix is
substantially reduced by the renumbering as may be seen by comparing
the number of zeros in Figs. 16 and 18 with the number of zeros in
Figs. 17 and 19.

ib) Calculated results for Chaff Clouds

In order to estimate the savings in time and computer storage
requirements ro2sulting from use of the sparse matrix algorithm, a
study was made of these parameters using the ElectroScience
Laboratory Datacraft 6024 computer and the Wright-Patterson Air
Force Base CDC 6600 computer.

In particular, it would be useful to obtain some estimate
of the number of non-zero elements which are regarded as sig-
nificant enough to retain and store. If we regard as zero any
elements in the impedance matrix whose magnitude is less than
10% cf the magnitude of the self impedance (diagonal) elements,
and we calculate the number of non-zero elements remaining in
the upper triangle matrix (Table 2), we can obtain the percent
of non-zero elements in the upper triangle (Table 3). The
numbers presented in these tables are averages of values ob-
tained from 10 randomly generated clouds for each combination
of average spacing d/a and number of dipoles N.
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18 and its auxiliary.

The structure of the 28 x 28 renumbered
Symbols are the same as in Fig. 16.

matrix of Fig.

Fig. 19.
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The average numbers presented in Table 2 are plotted vs N
with d/A as a parameter in Figs. 20 and 21. They all show a
remarkably linear character, indicating that significant
coupling (non zero elements) exists between an arbitrary dipole
and only its neighbors inside a surrounding "volume of influence",
Thus, with d/A fixed and N increasing, we expect, and do observe,
the number of non-zero elements to increase proportionally to N,
not N2, Consequently, the percent of non-zero elements for a
fixed d/A decreases as 1/N with increase in N. Recalling the rule
of thumb that this percent should not exceed about 20% if sparse
matrix techniques are to be effective, we see that this condition
is satisfied for all d/x > 0.5 for n > 200, a fortiori for the
larger d/A values. The absolute number of non-zero elements,
(Table 2) or course, determines the memory required of the com-
puter. Extrapolating the linear curves of Figs. 20 and 21, it
appears that a capability of storing 20,000 non-zero elements
(about the number of elements in the upper triangle of the full
matrix associated with a cloud of 200 fully coupled elements -
an entirely feasible problem of the W-P computer) permits the
sparse matrix solution of clouds containing approximately 1100,
5300, 15,300, and 32,000 dipoles if the average spacings d/X are
0.5, 1.0, 1.5, and 2.0, respectively. Investigations involving
time savings, described later, lead us to less optimistic
estimates.

The variation of the number of non-zero elements in the upper
triangle with d/x, N fixed, is not as clearly explainable in
physical terms as is the variation with N, d/» fixed. If we con-
sider each dipole to be coupled only to m neighbors within a
surrounding "volume of influence", then the number m should be equal
to the number of non-zero elements in the upper triangle divided by
N. Performing this operation on Table 2, we obtain Table 4, and
observe that, except for the smallest spacing d/x = 0.5, the values
of m (i.e., the number of elements in a "volume of influence") are
approximately independent of N, as one would expect. For d/» = 0.5,
clouds with lesser values of N probably are too small to obtain fair
values for m, so we presume those values of m obtained for the
largest clouds (N = 200) are most accurate. Accepting these latter
numbers, one recognizes, of course, that they are only symbolic of
the influence of coupling; they only give some indication of the
(integer) number of neighbors which are effectively coupled to a
given element in some average sense. We can venture one step
further and assume that each "volume of_influence" is a "sphere
of influence", with volume Vq4/, = (d/»)3m (where the subscript
recognizes that the "sphere of influence" has a size which is
probably dependent on the cloud density, i.e., d/»). Doing this
for N = 200, the radii in wavelengths Rd/A/A of the "spheres of
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Average number of non-zero terms in the upper
triangle of the sparse matrix using 106% rule,
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Figure 21. Average number of non-zero terms in the upper
triangle of the sparse matrix using 10% rule,
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TABLE 2
NUMBER OF NON-ZERO TERMS IN UPPER TRIANGLE

N
arn 50 100 150 | 200
2.0 30 62 86 125
1.5 62 130 190 260
Sparse
Matrix 1.0 160 360 600 750
0.5 550 1500 2800 3500

TABLE 3
% OF NON-ZERO TERMS IN SPARSE MATRIX UPPER TRIANGLE

H‘I}X 50 100 150 200

2.0 2.459% 1.25% 0.77% 0.63%
1.5 5.06% 2.62% 1.70% 1.30%
1.0 13.06% 7.27% 5.37% 3.75%

0.5 44.90% 30.30% 25.05% 17.58%

TABLE 4
m, THE NUMBER OF ELEMENTS IN A "SPHERE OF INFLUENCE"

51}7 50 100 150 200
2.0 0.6 0.62 0.573 0.625
1.5 1.24 1.3 1.26 1.3
1.0 3.2 3.6 4.0 3.75

0.5 11.0 15.0 18.7 17.5

il =™
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influence" are found to be 2.35, 2.18, 2.07, and 1.73 for spacings
d/x of 2.0, 1.5, 1.0 and 0.5, respectively. Although more data
would be necessary to substantiate it, this variation in Razy/2
appears to be a linear increase with d/x, as shown in Fig, éé.

The fact that the "radius of influence", Ry,,/1, decreases as the
cloud becomes more dense, i.e., as d/) decreases, could be ex-
plained by the increased shielding effect of the outermost elements
from the center dipole of interest by those elements in-between.
And the fact that the values of Ry/,/A exceed 2,0 for the larger
spacings lends credence to our present analysis because previous
data showed the dipoles to be essentially decoupled for these
larger spacings,

A11 the foregoing work is based upon the 10% threshold level
below which a matrix element is regarded as zero. The question
arises, how severely does this change the scattering cross section
and, in particular, the spatial average backs:zatter from that which
would be obtained using the full matrix? To show the effect of
sparsing the impedance matrix we present in Figs. 23-26 backscat-
tering patterns (same sense polarizations of transmitter and
receiver for clouds containing N = 30 dipoles with two different
average spacings, d/x = 0.5 and 2.0, calculated on the
ElectroScience Laboratory computer using th2 full matrix and the
sparse matrix (with 10% sparsing rule). We expect that the
sparsed matrices for these clouds contain about 95% zeros when
d/x» = 2.0 and about 50% zeros when d/x» = 0.5. Of course, as N
increases, these percentages will increase. A similar set of -
calculations were performed on the Wright-Patterson Air Force Base
CDC-0600 computer for three different clouds containing N=200 dipoles,
each 0.475 wavelengths Tong, and with average spacing, d/A=2.0. Figures
27-29 compare superimposed backscattering patterns (same sense
polarizations and cross polarizations of transmitter and
receiver} using the full matrix and sparse matrix (with 10%
sparsing rule). Figures 30-41 show similar patterns for two
other clouds with N = 200, d/x = 2.0. We expect that the
sparsed matrices for these clouds contain about 99.4% zeros
(see Table 3).

A1l these patterns, particularly those for the N = 200
clouds, are interesting because they display three features worth
mentioning. First, the patterns show differences in fine structure
but are very similar in gross structure in all cases. Second,
Figs. 25-41, all for average spacings d/x = 2.0, show a
recognizavle repetition of the pattern every 180°, i.e., the
backscattering pattern behaves about the same when the cloud is
viewed from a selected direction or from the opposite to that
direction. Furthermore, the patterns corresponding to the
sparsed matrix show this symmetry even more than do those for the
fuil matrix. This behavior is expected because in all these
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cases, thc clouds are tenuous enhough (i.e., dipoles are weakly
coupled) and do not contain sufficient numbers of dipoles to
exhibit significant extinction of energy from front to back of

the clouds. If all dipoles were of resonant length and were
perfectly decoupled, we would observe perfect symmetry of the
patterns; our dipoles are of resonant length (making each one
essentially a single mode structure with a 180° phase shift

upon reflection from it, i.e., all diagonal elements of the Z
matrix are essentially pure real), but they are not decoupled,
upsetting the symmetry somewhat. Sparsing artificially decouples
many elements (95%, 99.4% as mentioned earlier), so we expect the
sparsed results to closer approach the ideal, i.e., display more
symmetric patterns than do the full matrix patterns. Notice that
for the denser clouds, Figs. 23 and 24, where d/x = 0.5, pattern
symmetry disappears for full or sparse matrix solutions. Here,
the strong coupling definitely upsets the symmetry and even the
artifice of decoupling with a 10% rule does not decoup]e enough
elements (only about 50% as mentioned above) to regain symmetry.

A third feature, not directly observable from Figs. 25-41 but
derivable from them, is the effect of sparsing upon the spatial
average backscatter. Figure 42 presents bar graphs of average
backscatter obtained from each of 10 different clouds with

N =30, d/» = 2.0, each calculated using full matrices and
matrices sparsed by the 10% rule. Clearly, the average backscatter,
even with the full mat~ix, varies from cloud to cloud, as expected
from results presentec earlier, but the error incurred by using
the sparse matrix is less than this variance, and results in a value
for average backscatter which is s1ightly too high in most cases
by a few percent. That it is too high and not too low is expected
because sparsing results in a cloud which closer approaches the
ideal decoupled cloud and our results have shown that coupling
lowers the average echo below that for the ideal. Another mode

of presenting the same effect of sparsing on spatial average back-
scatter is shown in Figs. 43-45. For the three c]ouds containing
N = 200 dipoles, the cumulative probabilities P(o/22) of back-
scatter1ng cross section were calculated. The solid line in each
figur2 is associated with the sparse matrix, the dots with the
full matrix, and the crosses with the ideal decoupled case (calcu-
lated from P(s/22) = 1 - a=0/30; see Appendix I), The spatial .
averages associated with the three algorithms are indicated by

the vertical Tines. Notice that all three mathematical algorithms
infer that the backscattering cross section exceeds the average
cross section approximately 40% of the time.

Fe - RS P I S IR T BB 3 \‘,ﬁ‘ﬁ'&g“*h sl Lt b S et
A




-
N
%
1

Gl iies i Sl LA
-l e L s :

C - i@——ﬂ-ﬂ

o 0.5 1.0

2.0

Figure 22, Radius of "sphere of influence" vs average

dipole spacing,

k3

2.8

A e b

AT A R
e
5 o e Ui bt

bhir g




20

. FULL MATRIX
e N = 30 1(
' d/\= 0.5 esveeee SPARSE MATRIX

\*
10

g, d
;919/}"‘2 (dB)

—10

—~20 l | | | I I |

o) 50 100 150 200 250

300 350
¢ (DEGREES)

Figure 23, 6 -6 backscattering patterns as calculated ising the
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AVERAGE BACKSCATTER
SPARSE MATRIX vs FULL MATRIX

N=30, 9/\=2.0
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Figure 42, Spatial average backscatter from ten different
clouds using full and sparse matrices; the
symbolism L or H indicates that the sparse
matrix result was lower or higher, recpectively,
than the full matrix result by the indicated
percentage.
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Figure 43. Cumulative probability function of backscattering
cross section, cloud #1,




:
b
- [ e SPARSE
“ [ ; X X IDEAL DECOUPLED
" 1 ® ® FULL -
15 —
. U.BDE—' AVERAGES ® =
| ' [ ey
: % J i'
1 __0.60}—
g ! ! N‘
k| ~
il b
< K N
3 ‘ 0.40| FULL |
™~—srarRSE
~—DECOUPLED -:{
| 0 0 20 30 a0 50
o
A%

=

Figure 44, Cumulative probability function of backscattering
cross section, cloud #2.
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It is clear from what has been said previously that the
sparse matrix incurs substantial savings in computer memory.
But how about time saved? We may consider the time consumed
(on the ElectroScience Laboratory Datacraft computer) by three
separate operations: macrix setup time, i.e., the time taken to
generate the Z matrix ¢lements; reordering, i.e., the time taken
to reorder the Z matrix 5o that ils auxiliary matrix will also be
sparse; and backscattering, i.e., the time taken to calculate the
backscattering cross section at one look angle.

The number of elements in large matrices rapidly becomes
exhorbitant, even taking into consideration the identity of all
the diagonal elements and symmetry about the diagonal. Applying
the 10% rule permits us to store only a few or less percent of
these elements, but to apply the rule, all of them must be
calculated. This takes a great deal of time. In order to reduce
this matrix setup time, we appealed to the evidence of Fig. 22
to create what we call a "sphere-of-influence" model. In this
model we avoid the calculation of the vast majority of the
matrix elements by superimposing on the 10% rule, a sphere-of-
influence ruie, whereby one calculates only those matrix elements
representing the coupling of the dipole of interest to its
neighbors lying within a specified spherical volume centered
at the dipole, all other couplings being assumed zero. Figure
46 shows the computer time saved by applying the sphere of
influence rule as well as the 10% rule over the time taken by
applying the 10% rule only. It is based upon averages of 20
clouds of 100 dipoles each, and shows the time saved for
assumed sphere of influence radii from 2.07) to 2.5A. The
larger che sphere-of-influence, the smaller the time savings,
of course. But the larger the sphere of influence, the more
identical become the matrices sparsed by the two different rules.
The number of elements which differ in the two matrices so sparsed,
are presented in Fig. 46 as the percentage of the N2 elements in
each matrix. Clearly, at about a radius of 2.4 , the two become
identical, implying that the sphere-of-influence sparse model
should yield backscattering patterns equally as good as those
obtained from the 10% sparse model. Note that our average spacing
of d/» = 1.0 is assumed for the clouds. Denser clouds would
exhibit less time saving. Figure 47, also for fixed d/» = 1.0,
indicates the time saving for a variety of choices of N, using
2.07x and 2.5) radii for the sphere of influence. As expected,
the time saving rises as N increases.
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COMPUTATION TIME SAVING (%)
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COMPUTATION TIME SAVING VERSUS SPHERE OF
INFLUENCE RADIUS FOR SPHERE OF INFLUENCE

MODIFICATION OF THE SPARSE MATRIX TECHNIQUE
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model plus 10% rule over the 10% rule alone
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The foreging data reflect 2 very substantial time saving in
matrix setup time with 1ittle penalty in echo area. Evidence did
eaist, however, that the sparse matrix algorithm, even with the
spnere- of-influance rule built in, was time consuming. This
evidence was verified when a computation of an N = 500 dipr’e
cloud with d/x = 1.0 the Wright-Patterson Air Force Base
CDC 6600 computer overran its allotecd time of 5000 seconds. In
ordcr to investigate this time consumption mor2 carefully on
our own machine, a set of backscatter data were accurulated for
one loox angle with clouds of 30, 50, and 100 dipoles, each with
average spacings of d/x = 0.5 and 1.0. Twenty such clouds were
considered “or each case and average times obtained for *he three
parts uf the sparsc matrix nrogram. The sphere-nf-influence
plus 10% rules were applied to sparse each matr'x and the results
tabulated in Table E. The numbers dc not reprcsent ceal times
but ¢lock times on the ESL machine. Time ratios are of
importance here.

TABLE 5
C_OCK TIMES OF THREE PARTS OF SPARSE MATRIX ROUTINE
d/> N No, of non- Matrix Reordering 1 look Total time
zero elements Setup angle
1.0 30 76 842 475 17 1,350
1.0 50 13 1,863 1,884 31 3,743
1.0 100 343 5,033 17,410 76 22,534
c.5 30 220 15107 2,807 30 3,968
0.5 50 500 3,069 21,277 66 24,449
0.5 100 1,462 11,311 414,121 219 425,667

In this table total time is the sum of tne previous three operatioas
plus some small amount for inherent operations. The average number
of nonzero elements in the upper right triangle of the Z matrix

are also given. Clearly, with the sphere-of-influence rule

applied, it is the reordering time whizh is preponderant and causes
the sparse matrix algorithm to be so time consumiiig. In an effort
to reduce this reordering, an attempt was made to partially

reorder. The results, however, were not encouraging and the

effort was terminated.

The sparse matrix computer program used to obtain the fore-
going results is documented in Appendix E.
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Before turning to another topic we should point out one facet
of the sparse matrix approx1mat1on as arrived at by the 10% and
sphere-of-influence rule. That is, these sparsing techniques
are determined by the Z matrix alone; they do not take into con-
sideration the currents induced on the dipoles. For example, the
influence of the ith dipole current upon the voltage induced in
the jth dipole is proportiional to zijlj, the product of the
ijth matrix element and the ith current. Simply setting zjj to
zero if it is smaller than 10% of zji may not be r1gorous]y ap-
propriate if Ij is large. However, the 10% rule appears to do a
satisfactory job for obtaining the average backscatter., If, how-
ever, one is interested in extinction of current through the
cloud, the 10% rule or, even worse, \he sohere-of-influence model,
cannot be expected to yield good rec''ts ‘“r hy their nature,
these aprroximations modify the coherent forward scaiiorved wave
as it proceeds through the cloud. Sincz2 this is an important
phenomenon dictating the extinction rate in the first few wave-~
lengths into the cioud, a better model would have to be devised if
one is interested in extinction. The indirect methods described
below might serve such a purpose.

4. Indirect (Iterative) Metheds
a. Theoretical Considerations
Sections 2 and 3 have discussed direct anc sparse matrix

methods for solving the equation,

(12a) I =V ,

In this section we discuss indirect methods, of which linear
jteration forms a special class and which we will emphasize.
In order to avoid ambiguity in notation, in this section we

will rewrite Eq. (12a) as

(12b) Ax = b

and develop all pertinent equations in terms of A, x, and b
rather than Z, 1, and_V.

A11 indirect methods of solving Ea. (12b) for x can be viewed
from the inplicit formulaticn given by

(13) x = f(Ab,x) ,
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implicitness being characterized by the appearance of unknown vector
x on both sides. The symbol f in the above expression represents a
function or set of rules (algorithm) with the minimal property that
the exact x satisfies Eq. (13) identically. One additional con-
dition on f needed here is that it be able to transform an ap- 3
proximation to x into an improved approximation. It would be too :g
much to ask that one application of Eq. (13) yield the exact :
solution. However, repeated appiications might be expected to
give successively better approximations and this is precisely
the essence of jteration. Notation can be added to the implicit
form of Eq. (13) to give a general formula for iteration, i.e.,

(14) X(k) = f(k)(A.b,X(k‘] ) .x(k«Z) e 'x(k—m)) ,

where x(k) represents the kth iterate or approximation of x, Note,
in this form, x(k) is considered to be related to m previous
iterates, in which case the iteration is of m*h degre~. Also

note that, in general, the function f(k) can change from step f;
to step. If f{k) remains invariant throughout the iteration 1
process (k = 1,2,...), then the iteration is called stationary :
and if not, it is called ngn;§%§§ignary. The iteration process
is referred to a§ linear for fiK)'s which are linear functions

of x(k=1), x(k=2), 7. x(k-m) and noniinear otherwise. Iterative
methods subdivide still further into point-step and group or

b}osk-step methods and thesc categories depend on the choice of Fﬁ
£(k), More specifically, the point-step methods proceed, to '
improve the individual components ot solution vector x k) one~ :

at-a-time, independently of the oiher elements, while block-step @
methods normally improve blocks of eiements of x k). inde~ 3
pendently of other blocks. A rather unique block type itera<
tive method will be introduced later which will allow "overlap" &
of these blocks based on the physical scattering problem, .
Disussed in this section are three classical linear stationary
methods of first degree; the Point-Jacobi (J) method, the Gauss~
Seidal (GS) method and the method of Successive Over-relaxaticn
(SOR) together with their physical interpretation from the
scattering viewpoint. Aiso included is a discussion of convergence
criteria for these methods and finally a presentation of results, 3
mcstly calculated using SOR. B!

QT

Linear First Degree Mathods (J,GS, SOR)

The basic equation underlying many linear indirect methods
is derived from Eq. (12b) by adding x to both sides and re- E
arranging to give Et

(15) x = (I-A) x + b,
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which, in terms of a sequence of iterates can be written as

(16) ML STR LS )
where
(17) H=1-A.

H is usually referred to as the jteration gr error reducing
matrix and is related to the functions f(k) described in the pre-
vious section. Iteration via Eq. (16) is linear, stationary

and of first degree. This expression yields a number of clas-
sical techniques which differ by the "splitting”" of matrix A.
Consider the splitting defined by

(18) A=D-F-F
where D = [ajj], i =1, +--,N, is a diagonal metrix and E=[-a1? .
y

i>j, is strictly lower triangular and F=[-a;:], i<j, is strict
upper triangular. The iteration of Eq. (16} then becomes

(19) x(K) = D‘](E+F)x(k‘” Db ;
where thie iteration matrix is identitied as
(20) Hy = D™V (E+F) .

Equation (19) describes the well known Point-Jacobi (J) method
[48] or method of "?iTultaneous displacementc" [49]. Here,

nfr ﬁ?mponents of x'K) are computed as functions of components of
x (k=

as follows:
(21) x(k) =i g a x(k"]) PO S
1 3 g 1 ;1
J#

Note however, that by carefully considering the ordering of im~
provements in x(k) Eq. (%1; can be modified to incorporate the
at intermediate steps; i.e.,

latest improvements in x(k
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(22)

or, in matrix notation,
(23) k) = (0-5)"TF x(K) 4 (p-£) T
Here, the iteration matrix is given by
- -1
(24) Hge = (D-E)"'F .
Equation (23) is the familiar Gauss-Seidel (GS) method [50],
also known as the method of "successive displacements".
Both the J and the GS techniques can be considered special
cases of a larger class of computer oriented "relaxation" methods

often referred to as Qver-relaxation (OR) methods [51]. A basic
equation governing these methods is given by

25) %K) =gk 4 (oK) (keD)y

where the "relaxation factor" is uiuaily chosen to be a real
constant in the range 0<w<2 and x{k) is computed by either the
J or the GS method [52]. The technique for computing x(k) is
clearly not restricted to the above two methods; here, however,
only the GS method will be assumed. This assumpiton leads to
the defining equation for the familiar Successive Over-relaxa-
tion (SOR) method [53]; namely,

(26) x(K) = (10D ) (1) 1D TFIX KD (10D TE) DT,
where the iteration or error reducing matrix H is given by
(27) o= (1-00"TE) [ (1) I-wDTF].

The computational procedure for SOR is given by Eqs. (22) and
(25) and therefore, for w=1, SOR reduces identically to the GS
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method. Incidentally, when the solution x(k) in Eq, (25) is
computed by the J method, the resulting technique is called
the method of "simultaneous over-relaxation" (JOR) [54] and
reduces directly to the J method for w=1.

The SOR method of Eq. (26) is obviously a stationary Tinear
method of first wnegree. Nevertheless, SOR can be made non-
stationary by not restricting w to being a constant for all
iterations. It is not, on the other hand, clear how w should
be varied to improve the speed of the iteration procedure (con-
vergence) for the general case. More will be said of this
subject in a later discussion on convergence.

An alternative form for these same iteration procedures can
be derived in terms of an approximate or psuedo inverse to
matrix A, Let K-1 represent an approximation to the inverse

- Ea. (13). Then, the kth it?sate x(k) can be written as
x(k<1) plus a correction term d(k=T) given by

T Sl

where the residual vector r(*1) is defined by
(29) k=) g ay(keT),

Equations (28) and (29) can be combined to give
(30) PR o SIS PR o P
whereupon, the kth iterate may be written as
(31) ML o LD

The H matrix here has the form

(32) H= (1-K71a)

and it is easily shown that the following choices for A lead to
the previously derived H matrices; i.e.,




(33) k=D~ Eq. 20 (J)
Ny
(34) A = D-E +~ Eq. 24 (GS)
1 " _]
(35) A= ;-D-E + Eq. 27 (SOR).
k. An additional point to be noted in this latest discussion is

that A need not be identified with a rigorous matrix form such
as those given in Eqs. (33) to (35). A can merely be repre-
sentative of a special algorithm for computing the approxi-
mations to x. Equation (31) in this case will no lenger repre-
sent a rigorous matrix equation. This is in line with the pre-
vious comment that f in Eq. (13) may in fact represent only a
set of rules or algorithm for computation. More will be said
later concerning a less-than-rigorous notation.

S Sl b e e

’ Convergence Criteria
vl , Success or failure of any iterath method is measured Zn
terms of the limit of the sequence <x\K/> as k-w; j.,e., if x
e reaches the exact solution x in the 1imit, then the method is
‘ obviously successful and if not, the method fails. Although

] seeemingly straightforward, certain questions remain unanswered.
Namely, is information available to indicate, a priori, when a

particular method will converge and, if so, what quantitative

_ measures can be counted on to indicate sufficient convergence

g since the exact solution is never known? The first question is

answered rather easily which the following paragraphs will show,

The second question however turns out to be the more practical

yet difficult question to answer. Reasons for this will be ]

made clearer in the final portions of this section.

e s

The normed vector :pace defined in Appendix C of Ref, 38 i
ca? ?e reintroduced here in terms of the limit of the sequence
<x{k)> in the following way,

(36) 1im | [xx{K)|] = 0,

koo 4

where x is the exact solution satisfying Eq, (16) identically;
i.e.,

(37) x=Hx+b |, i
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The following result is obtained by considering the difference
between Eqs. (37) and (16),

(38) (x—x(k)) = H(x—x(k']))
and can be taken recursively to yield

(39) (x-x(k)) = Hk(x-x(o)).

Note here t?sg)x(o) is the initial "guess" corresponding to k=0,
is a

hence, (x-x constant vector. Compatible norms (see
Appendix C of Ref. 38) are needed on both sides of Eq. (39)
to give

) Ixexl < el

where the inequality |lHk|| _<__||H||k has been included in bring-
ing this expression to the form of Eq. (40). Recal] Eq. (36)
defines the unique condition for convergence of <x k5> in the
established normed space and by applying this condition to

Eq. (40), the necessary and sufficient condition for conver-
gence of Eq. (16) becomes

(41) Tim |[H][* = 0,
koo

and this condition can only be satisfied if

(42) [H]] < 1

Hence, the properties of H determine co?vergence characteristics
of Eq, (16) for any starting vector x(0), The natural norm of

Eq. (42) remains as yet unspecified but has a lower bound (see
Appendix F o7 Ref. 38) in the spectral radius given by ;

(43) [[H]] > o{H}

where the spectral radius of H, p{H}, is defined by

(44) p{H} = max [i;]
1




and the Ai's are solutions to the determinantal eigenequation,

(45) det(H-AI) = 0. .

Therefore, the necessary and sufficient condition for convergence
of Eq. (16) to the solution x (see Appendix G of Ref, 38 for this
proo:’) is given by

\46) aliftlie< I 'n

Convergence properties for the iterative methods outlined k.
earlier can be predetermined as the above procedure indicates; 3
however, for certain special cases, calculation of eigenvalues 0
can be avoided. This would certainly be an advantage, especially
for those cases when the order of matrix H is ]arge (e g., i
N»>100). These special cases can be recognized in terms of the §
following properties [55] of the original matrix A and the split- -
ting of A defined in Eq. (18):

1. If a
E+F>0, ;.
D>0 , {
and :

o{DV(E + F)} <1

then A is an M-matrix. i 
2, If

IERCNIES

then A is stricily diagonally dominant.

3. If no NxN permutation matrix P which permutes rows
and columns of an NxN matrix exists such that

» (T denotes transpose)
L 2]

wnere D], 02 are square matrices and

78




b
L

B

oV E+ )] <1,

then A is irreducibly diagonally dominant.

4, A has the following properties;

A is hermitian (A = A*) and (* denotes compiex conjugate
transpose)

A is positive definite (eigenvalues of A are

Ai’ i=1,2,¢++,N and satisfy Ai > 0, for all i,

The convergence of the J and GS methods is assured for any

matrices satisfying 1, 2 or 3 above and the SOR method neces-
sarily converges for O<w< 2 when condition 4 is met. Proofs of
these sufficient conditions for convergence are given in Varga [56].
If, in addition to condition 4, A has "property A" as originally
defined by Young [S7], then an optimum relaxation factor wgpi

can be computed for the SOR method. This optimum factor is

given by
_ 2
(47) wopt - 5 ?
1+ 1=
where
(48) v = p{HJ}

and Hjy is computed from Eq. (20). If, on the other hand, A

does not satisfy "property A", then Wont CaN only be determined
empirically. P

The discussion of convergence, so far, has centered on finding
the spectral radii of appropriate iteration matrices or on the
special properties of the original matrix A. Consider, how-
ever, the more general matrices which appear in the EM prob-
lems studied here. The A matrices in these cases are complex
symmetric (nonhermitian) and not diagonally dominant in all but
the most trivial cases. They are positive definite, or at least
positive semi-definite, in the sense that

(49) Re{x*Ax} > 0 (*denotes complex conjugate transpose),
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where this quantity is related to real power dissipated (radiated)
by the system represented by impedance matrix A. These basic
characteristics of the EM problem eliminate any possibility of i
satisfying conditions 1-4 above. Therefore, the only rigorous :
technique is to compute the appropriate spectral radius, but i
some difficulty in computing p{H} is 1ikely to be encountered for f
many practical EM problems due to the size of N. General sub- :
routines are available [58] for calculating complex eigenvalues of
complex matrices; however, when N becomes large (>250), these
routines will require more fast-access memory than available on
most computing machines. Even if these computations are pos-
sible, the authors suggest that the time and effort used in
searching for a "largest" eigenvalue would better be used trying
the iterative technique.

i

i
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A suitable measure of convergence characteristics usually
must be determined empirically. One natural choice is a meas- ¥
ure based on the vector of residuals defined by £q. (29), or [

(50) vk = p o ax(K)

This ?xgression can be misleading since it states that if r(k)=0.
the x{k is the ?x3ct solution and this is correct. Hoyever. :
to assume that x(K) is near the exact sclution when r(k) is

small (but not zero) may be a gross overassumption. A hint of
this specious behav}os is given by the following bound on the
relative error in x(k),

(k) (k)
(51) xxx E‘*+{}FT-LL Cond{A}

Clearly, the ratiollr(k)ll/llbll must be considered in light cf
the condition number of A and the possible effects it may have
on the upper bound of Eq. (51). It is also important to point
out that all norms of residuals defined by Eq. (50) do not
necessarily decrease monotonically when the iteration process
is convergent; i.e., they sometimes oscillate or increase. Even
then, Eq. (51) implies that if a monotonically decreaszn norm
is found, it may still be mere speculation to assume x(KJ is

in some sense approaching the correct solution. Still another
m?aiure of convergence is to consider a norm of the change in
x{k), from one iteration to the next. Consicer the following
wormed difference,

i i Sonad 0 A e ¥t RN
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52 [sx{K)]] = a0 2 (T

0 and ask the following question:

Does there exist a value o 5, say k., and some € > 0
such that for k > k_, |[sx\K}{| < ¢?

1 L' If so, the process can be said to converge. The particular

choice of € used to indicate sufficient convergence, however,
is critical since the normed difference given by Eq, (52) is
not necessarily a monotonically decreasing measure, even if the
solution is convergent.

b A last comment is in order before proceeding, Certainly,

P the most reassuring indication of convergence would be to compare
solutions obtained by different techniques and possibly even by

] a physical measurement and find that they agree. This type of 1
3 comparison should obviously be sought wherever possible and 4
: v this was indeed the case in this study. In a following section

i we present certain confirmed iterative results and these results
are used to justify the choice of error measure used for reliably
indicating convergence.

r
L=

s

'i~ :] Physical Interpretation of the Jacobi and
¢ Gauss-Seidel Methods

A physical interpretation of the J and GS methods is pre- E
sented here with the aid of Fig. 48. The A matrix of previous
equations here represents the 5 x 5 impedance matrix corresponding
to the 5 dipoles shown in the figure. Consider the initial ex- E
citation on each dipole to be the incident field and the initial j
current vector to be x(0) = 0.

N
& | samea——y

The J method in general computes x(k) by considerin? the
incident field and the scattered fields produced by x(k=T), The
latter co?¥$ibution is zero for k = 1, hence the J method cal-
culates x corresponding to the "uncoupled" array. The J k.
method improves the solution for k > 1 by accounting for the 4
incident field and the scattered fields at each dipole where &
the scattered fields are produced by "old" currents. This

&I i

| interpretation of the J method in terms of multiple scattering .
— within the array was first described by Tai [59]. A1l elements L
of the solution vector cre updated simuitaneously at the end of ;
fl each iteration, hence the name "method of simultaneous dis-
placements".
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Figure 48. Sample random array for Jacobi and Gauss-Seidel
iteration methods.

The GS method uses the "latest" currents whenever possible,
i,e., the initial current on element #1 due to the incident field
is

b
(53) x%o) . 5:—] ‘

the initial current cn ciement #2 due to the incident field plus
the scattered field from element #1 is

56) g7 = (o + a)/ag,,

the initial current on element #3 is due to the incident field
plus the scattered fields from elements #1 and #2

$98) 3= (g 4 ag”) + agp /sy,
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etc. The name "method of successive displacements" clearly ap-
plies to the above description and, as we might expect, the &S
method has superior convergence properties since it accounts for

e3>
—

i=1
interactions per iteration whereas the J method only accounts for
n interactions per iteration.

The SOR method operates on the GS iterates by "relaxing" the
latest correction through a weighted averaging process. Note that,
even though SOR degenerates to GS for w=1, convergence of SOR (w#1)
can be relatively good while GS may not converge at all, Physical
interpretation of SOR in terms of scattering is more difficult than
for J or GS. Weighted averaging of currents seems to be a purely
mathematical concept. However, by assuming the array to be im-
mersed in a medium which modifies the multiply scattered fields
either by introducing "loss" or "gain", this would cause cor-
responding reductions or increases in interactions between dipoles.
The application of an iterative procadure (e.g., GS) under these
"relaxation" conditions could also be termed a form of SOR. The loss
or gain in this case could either be reduced as the iteration con-
verged or left in if the convergence required it. The solution to
a "lossy" problem might be of corisiderable value in certain cases,
especially if the "lossless" case could be deduced from such a
solution.

Sphere of Influence (SOI) Method

The SOI technique is an empirically derived concept
based on the electromagnetic scattering viewpoint. The approacn
stems directly from the array problem where ihe overall scatterer
is so large and intricately detailed that it produces a matrix
problem too large to handle by direct methods, Hence, the larger
problem is broken up into a reasonable number of smaller problems
each of which can be solved directly, The heart of the method lies
in the hope that the solution to the large case can be obtained by
interacting these smaller solutions with one another through an
iterative process. The idea of "influence" manifests itself as a
mutual impedance or coupling criterion between dipoles as in the
case of the random array, Distance between dipoles provides a
natural means for determining gross effects between dipoles and
relative orientation is another, When these criteria fail to give
a precise decision rule, a comparison of the mutual impedance to a
preset level can be made, The level or threshold used here is
defined to be a prescribed fraction of the diagonal or self im-
pedance term, This criterion is also similar to that used in the
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sparse matrix approximation for the scattering problem. Recall,

the sparse matrix approach attempts to "thin" the matrix by deciding
which elements are less important (i.e., below a certain magnitude)
and a special algorithm is used to solve the thinned matrix

problem exactly. This, however, is not the solution to the original
problem and it is for this reason that iteration may provide the
only means for finding the exact solution to the original problem
for these large cases.

The basic SOI method computes groups of closest coupled neighbors
and uses these "overlapping" groups to form a sequence of N reduced
iteration submatrices. Closeness is measured by the relative in-
fluence betwcen dipoles using the a priori criterion mentioned above.
The N iteration submatrices will in general be distinct and the jth
submatrix will be used to compute only the current on the jth dipole
(point-step). The N subsystems formed by these submatrices are each
solved by a direct technique and the scattered tangential electric
fields are computed after each iteration and compared to the in-
cident tangential electric fields as a check on the zero tangential
eleciric field boundary conditz ? along each d1po]e The same
residual mode voltage column r of Eq. (50) is proportional to the
total tangential electric fields and is used as the excitation column
for the next iteration if boundary ccwd2t1ons are not sufficiently
met. The process is continued until||r(k)||is reduced to an accept-
able level.

One possible formulation for SOI is given in the following
equations with the understanding that the overall technique cannot
be simply described by a single matrix equat1on as with the other
methods mentioned thus far. Let A(mj{mj) represent the m: x mj
iteration submatrix containing self and mutual 1mpedances for %he
jth dipole and its mj-1 most closely coupled neighbors. Tne members
of this jth subsystem (submatrix) are obtained by applying the
following condition to the jth row of A,

(56) c!ajjl < iajp! ' 250N
’

i
J

S

P
P

where ¢ is a prescribed (empirical) real constant in the range
0 < ¢ < 1. The jth subsystem at the kth step of the iteration
process is then given by

(k) - W(k=1)
(57) A(mjlmj) d (mJ) =r (mJ)
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(k-1)

(m3)
group of dipoies and d
the kth correction to the current on dipole j, i.e.,

when r is the(E; x 1 "subvector" of residuals on the jth
(

j) is a mj x 1 subvector which includes

(58) ng) = xgk-]) + dgk)

The kth iteration is complete after N subsystems of the form Eq. (57)

(j=1,2,+-+,N) have been solved and all corrections (j=1,2,+++,N)
of the form E. (58) have been made. A new residual is obtained
again by including the original A matrix and b vector in Eq. (50).

Consider a simple application of SOI to the 5 dipole array
illustrated in Fig. 49. The region ("sphere') of influence around
dipole #1 (j=1) is shown figuratively as a circle about dipole #1.
Recall, this circle actually represents the region of influence for
which Eq. (56) is satisfied for j=1 for the given value for c. The
matrix equation for this subset will be of order m=3 and for the
kth iteration this equation takes the form

- [ (k) T [ (k=1)]
aj a3 a5] |4 2
(k) _ (k-1)
(59) agy 33 35| |93 =. 13
3 (k) {k-1)
agy 353 5| | g rs |

Direct solution of this Eu?iystem yields subvector dgk) from which
the kth correction to x{ =) is obtained, i.e.,

60)  x{K) = k1) gl

Some experience is necessary in choosing constant ¢ in order that
the maximum of m; defined by

(61) max m.= M
j J

remains within the capacity of the machine and yet still yields a
convergent solution. The two extreme choices for c are ¢ = 0 and
c = 1. A1l submatrices corresponding to the choice c=0 are iden-
tically equal to the original A matrix and the first subsystem
therefore yields a total solution for x with one application of
the direct method, assuming of course the computer can do this.
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The ¢=1 choice causes SOI to degenerate to the J method since only
the diagonal terms are inverted in this case.

A potentially important modification to the SOI method is
the inclusion of a "forward scatter" (FS) model. Consider the
dipoles which are located on the far side of a very large and dense
array. These dipoles are very likely to be shadowed by those located
on the directly illuminated side of the array. Hence, an improved
"region of influence" for dipoles deep inside the array (or on the
back side) could be obtained by taking into account the well known
coherent forward scatter phenomenon which occurs along the line-
of-sight. The reasoning here is that as the incident wave passes
over these resonant dipoles (up front), the rescattered fields in
the forward direction are nearly of opposite phase tc¢ the progressing
incident wave and as this incident wave moves farther into the array,
these coherently rescattered fields begin to "buck out" the incident
wave. This everntually produces a shadowing effect on dipoles in the
deep interior and far side regions of the array.

The above concepts of FS are rather simple to grasp; however,
implementation of FS into the SOI algori h? is relatively messy.
The FS process entails checking all aiszk products which occur
on or near the line-of-sight aspect through the array toc the ith
dipole. The "up stream" jth dipoles with scatter products which
satisfy

(62) /2 < arg{aijé'j‘)} < 3n/2

are then chosen to be included in the next (k+1) subsystem (sub-
matrix) for calculating the current on dipole i. The newly
modified SOI-FS method is nonstationary since the N submatrices
will no longer be constants for ?h§ whole process. They will of
course become more constiant as x{K) nears a constant solution;
however, in general, these submatrices will be quite changeabie
in the early stages of the iteration. Also note that, the re-
sulting subsystems will be larger than for SOI alone for a given
constant ¢ and hence, implementing FS into SOI will generally
require different values for ¢ in order to maintain M in the
viable range for direct solutions. The addition of FS should,
however, improve convergence of SOI and thereby allow an in-
crease in ¢ in order to make room for the new dipoles added in
by FS.
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Figure 49, Sample random array for Sphere of Influence
iteration method.

(b) Calculated results for chaff clouds

In Chapter VI of Ref. [38] there appear a set of curves of
error bounds and condition norms for a few typical impedance
matrices arising from chaff clouds. In general, these bounds
rise with increase in dipole density and numbers, a trend which
eventually must be reckoned with if direct solutions to larger
order systems are sought. In light of this the iterative schemes
are attractive and are used here to solve for the scattering
from clouds of up to 1000 dipoles.

Numerical results presented in this section are divided into
four areas: a check case; applications of SOR iteration to the
solution of electromagnetic scattering by large clouds of thin
resonant dipoles; application of SOI iteration to the solution
of electromagnetic scattering by a small cloud of thin resonant

dipoles; comments on applications of SOR to surface patch and wire-
grid models. The appropriate equations from the preceding sections
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have been translated into FORTRAN and documented listings of these
programs appear in Appendix VI. A1l calculations were performed
with 11 digit precision on a Datacraft Model 6024 computer having
approximately 32k of real fast-access memory and 32k of virtual
(disk) memory. Cycle time for this computer is approximately 1
microsecond. Certain special programming techniques, unique to
this machine, are incorporated in the FORTRAN programs to allow
psuedo-random access to approximately 6-1/2 million (24 bit)
additional words of disk memory. Three and one-fourth million
complex numbers can be computed, then stored in a special
truncated form (6 digits) and retrieved using this technique.
Also, a special subprogram is included which computes mutual
impedances between "distant" dipoles; description and verifi-
cation of this subprogram are also given in Appendix VI. This
subprogram uses a special simplified calculation of the mutual
impedance when dipoles are spaced greater than 1x and inclusion of
this simplified calculation resulted in a computation time for the
approximately one-tenth that of the original estimate for the

N = 1000 case; estimate ~ 10 - 12 hours, actual time ~1 hour,

It is isportant to note that all the results up to this point
have assumed radially inhomogeneous densities for the clouds; in
this section, however, all the results assume randomized clouds of
uniform density.

A Check Case

Because some of the clouds treated here by iterative methods
are sc large, it is difficult to verify that the methods are
actually giving correct values for echo, since no other reliable
independent methods exist for comparison checks. Yet such checks
are imperative if one is to have some confidence in the resuilts.
To this end we chose as a check case the planar array sketched in
Fig. 50. It contains 841 resonant dipoles interlaced into a
periodic structure with average spacings between nearest neighbors
of approximately 0.57A, By the technique developed by Munk [60]
scattering from such an array can be readily obtained under the
assumption of no edge effects, i.e., the array is considered
to be a section of an infinite array. Using Munk's technique and
SOR (with w= 0,4) we have calculated the bistatic cross section
at the specular angle (6,=180°-6;) for three different incidence
angles (67=90°, 60°, 30°$ in the y-z plane. The resultiny values
of the cross section o vs iteration order are shown for the three
angles, respectively, 1in Figs. 51-53. 1In all cases these values
obtained by SOR agree very well with Munk's results, the greatest
discrepancy (-0.45 dB) appearing at the 6; = 30° incidence angle.
This disagreement is thought to be inherent in the Munk solution
Tor angles close to grazing.
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In Figs. 51-53 certain "convergence norms" are also computed
4 5 for each iterate k and displayed for comparison as quantitive meas-
. i ures of convergence. Four different norms appear in varzﬁgs fig-
& i ures of this section; three are based on the residuals r defined
by Eq. (50) and one is based on normed changes in solution x k)

similar to that defined by Eq. (52). A summary of these convergence
norms is presented in the following table.

A

N

1 TABLE 6
| J CONVERGENCE NORM DEFINITIONS
i - Norms* based on r(x) Norm based on x(k)
* j (1) (11) (111) (1Iv)
i k k -
[l e, LI A PO O S
E [ S o (3 PR ()
t LI i |b] NI |b]] iomin{|x:" |, ] x; |}

—

*See Appendix C of Ref. 38 for definitions of vector norms used.

| o1

The (I) and (IV) norms in this table were chosen strictly as re=
presentatives of the quantities appearing in Eqs. (51) and (52)
while the (1I) and (III) norms were defined with the physical prob-
tem in mind, i.e., (II) is a normalized measure of the residual
indicating the boundary condition (Eyay = 0) mismatch on one
dipole in the array and (III) is a normalized average of all
r?s;dua1s for the whole array. The (III) norm will be denoted by
e\k) in all data presented in this section. Two points should be
made here. One is that the (k) norm appears in all cases we have
calculated to be the best ba1an?e§ and most trustworthy; the

other is that the behavior of e{k) appears no different for

random arrays of dipoles than it does for the periodic array.
Since the results in cross section were very satisfactory f?r

the periodic array, we infer that the similar behavior of ¢ k)

implies satisfactory results in cross section for the random
arrays.

d e ool

(L o]

-

e

Very little information is found in the literature on
suitable choices for SOR convergence measures for large complex
system of equations such as those treated here. The convergence
norm caiculations are presented for the purpose of empirically
determining just such a measure for these types of problems,
e.g., one which might eventually be included in the computer
-LEQJ programs to indicate a reliable stopping pojnt in the iterative

" process. The normalized average residual e k) appears to possess

s =3

,
(—
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the uniform characteristics needed for this job, It also has the

interpretation of being a measure of the "average" boundary con-
dition ETAN = 0 over the whole array. Other norms considered

do not appear to indicate this same overall condition of the
iterated solution but, tend to pin-point specific residuals or
changes in the solution which, to a great extent, do not
seriously affect the array scattering properties in the far
field., Qther "averaging" norms might do as well or better

than e (K ; however, this study has concentrated on isolating
only this one case which seems to be well suited for these types
of problems.

No attempts were made in this study to determine optimum
relaxation factors for SOR, An initial choice of w was made at
the outset of each new problem and if convergence was indicated,
no changes were made; the exception is Fig. 67, where changes
were made during the same iteration run with 1ittle observable
effect.

SOR Solutions for Scattering by Large Clouds
of Chaff Elements

The SOR iteration technique is used to solve Eq. (12b) for
the currents induced in arrays of dipoles by plane wave fields
of Eqs, (II-2) and (II-3). The & polarized backscatter g and
bistatic cross section for certain bistatic angles (g = ¥ 10°
range) are calculated from these currents at each step k of the
iteration.

Figure 54 considers an initial case of 100 dipoles in the
random array configuration. The SOR technique (w = 0.6) can be
compared to solution by a direct method (Cholesky); resulting
solutions from both methods agree quite well (< 0.1 dB). This
figure also includes calculated values for the four norms
appearing in Table 6. The (II) and (IV) norms vary erratically,
although both show overall decreases over the range of k. The
({a norm and (k) both show a consistent decrease, but only
€ is "monotonic" over the wnole range.

Convergence characteristics of ¢ for a 500 dipole random
array are indicated in Fig. 55 for SOR iteration using two
values of relaxation factor, »=0.5 and w=0.4. Onlye k) was
calculated in this case. Thew=0.5 case appears to converge
faster (steeper slope on €{(k)) in the early stages (k = 1 to
k & 20), however better overall convergence was obtained for
w=0.4. Figure 56 shows a sample of the bistatic cross section
pattera for k = 10, 20 and 36. This figure “ndizates the degree
of convergence obtained in this g = ¥10° sector at the cor-
responding stage in the iteration. The convergence of the
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bistatic pattern seems to be best in the larger amplitudss
and for k > 20, major changes occur only in the null regions,

Figure 57 is the first of a series of 10 figures showing
five SOR iterated solutions (w=0.4) for a single 1000 dipole
random array (#1). These figures alternately show o back~
scatter and bistatic cross section for five aspect angles of
the incident wave. Each of these cases corresponds to a new
"b" vector for the right hand side of Eq. (12b).

Figure 57 indicates convergence of o backscatter and shows
a comparison of the (I) norm and ¢ k) for 8g = 90°, ¢o = 0°,
The (I) norm in this case has lost a]} gesemb]ance of being a
monotonically decreasing norm while e(K) continues to show a
smooth decrease with increasing k. The curve for o _backscatter
in this case converges smoothly to the value o ~ 90A2, a rather
high value for these random arrays. Figure 58 displays a portion
of the bistatic pattern (8=£10°). Here, the amplitude changes
on the peak are less than 1 dB for k > 5, while the null depth
changes are more than 10 dB over this same interval.

Figure 59 considers a new aspect angle {64=90°, ¢5 = 10°)
for the same random array. Here, o backscatter shows somewhat
irregular convergence as compared to the previous aspect; how-
ever, the same smooth decrease in e(k) is omnipresent. The
bistatic patterns for k = 6, 15, 30 and 42 of Fig. 60 indicate
considerable change is taking place over this range. The
largest changes, however, occur in the null regions and peak
amplitude regions show the lesser changes.

Figures 61 and 62 indzc?te o and bistatic patterns for
8o = 90°, ¢ = 20°. The (k) norm in Fig. 61 again shows mono-
tonic improvement-in average residuals and Fig. 62 indicates es-
sentially converged bistatic patterns for k > 15 with changes less
than 2 dB in peak smplitude and less than 3 dB in the null region.
Oscillations of o in Fig. 61 are less than plus or minus 1 dB
and decreasing for k - 25.

Figures 63 and 64 show o, e(k) and bistatic cross section
for 8g = 90°, ¢g = 30°. Fluctuations in o for k > 16 are less
than 2 dB and e?k) is again smoothly decreasing. Bistatic patterns
appear to change very little for k > 30.

Figures 65 and 66 are the last figures showing data for
large random array #1 (6o = 90°, ¢o = 40°). Convergence norms
(1) ard (IV) are included in Fig. 65 with «(k), Although, norms
(I) and /1V) do not have the smooth decrease shown by ¢ kg, it
appsars that an average curve of SIV) over s range of k wouid
repeat the trend indicated by elk), "The oscillatory nature of
o backscatter is confirmed in the bistatic pattern curves of
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Fig, 66. The final bistatic curve (k = 45) is bounded by the
k = 25 and k = 35 patterns and again, largest changes occur in the
null region.

Data in the following four figures (Figs. 67-70) were cal-
culated for a second large random array (#2) with the same average
density (8 dip/A3) and number of dipoles (N = 1000) as in the
previous case. The new array was generated with a new initiali-
zation of the random positioning programs. The two cases con—
s1der8d for %h1s new array correspond to aspect angles 8, = 90°,
g = ° and 10°

Figure 67 shows o and e( ) data calculated for 65 = 90°,
¢o = 0° case and Fig. 68 presents the corresponding b1stat1c pat—
terns. Four values of relaxation factor (w = 0.4, 0.35, 0.3 and
0.25) were used in this case with the initial iteration performed
with w = 0.4. The results for v = 0.4 are indicated in Fig, 67
by the marginally convergent curve. The iteration was then re-
started (k = 1) with w = 0.35 and continued through k = 12; at
which time, w was changed and the iteration carried out to k = 30
for w = 0.3; then w was again changed this time to w = 0.25 and
the process carried out to the final iteration k = 61. The
reason for changing w during the same iteration run was an
attempt to isolate variations, if any, in €(k) which might cor-
respond to different values of w, No recognizable changes were
noted; in fact, the iteration appeared to be converged for all
k> 30 (o = 0.3, 0.25) and the bistatic patterns in Fig, 68
confirm this to a great extent.

A second aspect angle (g9 = 90°, ¢o = 10°) is considered
in Figs. 69 and 70. Here, SOR was restarted three times for
random array #2 with y = 0.3, 0.25 and 0.2. The two cases

= 0.3 and 0.25 were not convergent as Fig. 69 shows and w had
to be reduced to y = 0.2 to obtain the one convergent case
indicated in the figure. Figure 70 shows bistatic patterns
for k = 20, 30 and 36 for the converging case. The largest
changes in these patterns again occur in the null regions.

Three additional figures are included in this section
(Figs. 71, 72, and 73) comparing convergence characteristics of
o backscatter. <g> (the bistatic cross section average over

110°) and o7 (total scatter cross section from the forward
scatter1ng theorem reviewed in Appendix K). Figure 71
preseints oT and <g> with thea curve previously calculated in
Fig. 57. The bistatic average <¢g> in this case shows little,
if any, improvement over the original ¢ curve; however, oT is
converged as early as k = 5. The rapid convergence of oT
indicates that apparently the total power scattered in all
directions by the random array is insensitive to the computed
currents, compared to either ¢ or <o>.
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Figure 72 illustrates oy, <o>, and the previously computed
o data from Fig. 59. The average <o> in this case does smooth
out the large dip in the vicinity of k = 6, however, its
overall convergence characteristics are no improvement over
o (unaveraged). Total cross section o for k > 5 has converged
to very nearly the same final ay value in the previous figure
(same array).

Values of o7 and <o> are compared in Fig. 73 with o from
Fig, 69 for random array #2, Both ¢ and <o> in this case have
similar characteristics, however, neither one shows significant
improvement in convergence rate over the other. Note, the con-
verged o7 for this new case (array #2) is essentially the same
as that obtained for random array #1).

An important result brought out by all these data is that
convergence rates for many cases appear to be functions of ex-
citation; i.e., given matrix A (e.g., random array #1),wopt
will vary with "b", This is even more apparent for random
array #2 where one value of w gave convergence for the first
angle (v = 0.25), but was not sufficient to give convergence
at the second aspect angle. This particular characteristic of
SOR solutions to these EM problems merit further investigation.

Much of the o backscatter data presented in these figures
indicates a rather wide range of convergence rates for o; yet,
many of these same cases have very similar characteristics in
e(k¥. These same cases often have apparently well converged
bistatic patterns with most readjustments occuring in the "null"
amplitudes beyond certain values for k. However, the o back-
scatter curves sometimes still exhibit considerable instability
in spite of the above signs. A probable cause for this wide
range in convergence rates for o is the slope of the o back-
scatter pattern at the desired aspect angle; e.g., if the aspect
corresponds to a relatively flat amplitude portion of the o pat-
tern, then convergence of o will more than likely appear in fewer
iterations. (A major exception to this viewpoint is the rapid con-
vergence of o for the large periodic array. Here, the reason for
fast convergence is probably not due so much to the flatness of
the pattern as to the generally reduced maqgnitudes of the off-
diagonal elements of matrix A. Convergence rates of o for random
arrays having lesser volume densities of dipoles would certainly be
faster for this same reason.) The chosen aspect angle for random
arrays can often unknowingly correspond to a steep skirt or be
near a null (cusp) in the o backscatter pattern and the slightest
changes in calculated currents will cause pronounced changes in the
iterated o curves. If, however, these same o curves are accompanied
by smooth monotonically decreasing eik)'s, then these iterated
solutions can still in some average sense be assumed to be nearing
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the true solution. This implies that averages ofo-, over many
seemingly converged cases, might actually be good approximations
of the true averages if 0" were known exactly. A great deal moie
data is obviously needed to confirm or deny this relationship.
However, if this should be the casc, many of the statistics of
for these large rather dense random arrays could be calculated
without requiring rigorous convergence of the iterative technique
to the exact solution.

There are certain distinct characteristics which keep re-
appearing in these iterated solutions for the 1000 dipole random
arrays: namely, rapid convergence of o7 and the relative stability
of angular positions of peaks and nulls in the bistatic patterns.
A sample calculation of the half power beam width for a uniformly
excited circular aperture with the same projected area as the
1000 dipole array (~12012) resu’ts in an approximate 9° beam
width. The half power beam widths of peaks appearing in the
bistatic patterns interestingly enough consistently fall in the 6°
- 10° range. These characteristics are undoubtedly related to the
fundamental size and density of these arrays. Further investi-
gations of these relationships and of overall o backscatter
statistics appears to be warranted.

S0l Iteration Solution for Scattering by a Small
Cloud of Chaff Elements

The newly derived SOI technique introduced previously is
used here to solve Eq. (12b) for a 100 dipole (8 dip/»3) random
array. The results are shown in Fig. 74 where the two sets of
curves correspond to two values of influence coefficient C. The
direct solution obtained by Cholesky's method is also indicated.
Computations corresponding to C = 0.2 required approximately 30
seconds per iteration and used a 14 x 14 maximum iubmatrix size.
Convergence of o in this case was irregular and e increased
for k > 16. Computations for C = 0.1 required a maximum 44 x 44
submatrix and 150 sec/iteration and cgnvergence in this case
took fewer iterations (k ~ 7) and e(k) exhibited a pronounced
decrease over this same range.

Figure 75 is included here for comparison of SOI with SOR.
The SOR iteration is used in this case to solve the saTe system
of equations as for the above SOI method. The ¢ and ¢ k) data for
three relaxation factors are shown; w = 0.7 was a divergent case,
w = 0.6 converged in the fewest number of steps and = 0.5 con~
verged, but required more jterations than w = 0.6. Iteration
time for SOR (N = 100) was approximately nine seconds per itera-
tion - a considerable improvement in time over SOI. The SOI
algorithm is extremely inefficient compared to the simple form
of SOR and for comparable rates of convergence, SOR is estimated
to be approximately 15 times faster.
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The direct solution to the above case required approximately
44 seconds while SOR took 90 seconds (k = 10, w = 0.6§ to solve the
same system. Recall, however, that the number of computations
(multiplications) in Cholesky's direct method goes up as ~1/6 N3,
while SOR used ~N2 computations per iteration; therefore, if the
number of iterations required to achieve the desired accuracy is

< 1/6 N, then the SOR iteration will have a time advantage, even
over the direct method.

Comments on the Applications of SOR to
Surface Patch and Wire-Grid Models

Calculations using the SOR technique to solve Eq. (12b) for
a surface patch-modeled flat plate and wire-grid modeled circular
Toop (polygon loop) have been unsuccessfui, even for trivially
small cases using a 12-mode surface patch-riodeled square plate
(* x 2) and a 10-mode wire-grid modeled loop {(0.3\ radius).
Both types of modeling used the overlapping type modes, cosines
for the plate and piecewise sinusoids for the loop. The apparent
numerical difficulty arises in the large magnitudes of the over-
lapping mutual impedances; these mutuals are, in fact, almost as
large in magnitude as the self impedances positioned on the main
diagonal of A. Hence, it appears that if off-diagonal terms in
rows of A are almost as large in magnitude as the self term, then
the SOR method fails to cunverge for all w. A modified approach
which may be worth investigating is a hybrid iteration technique
probably combining SOI with SOR. The method would again be based
on solving small systems of equations directly (SOI) but then using
these current solutions to up-date other currents in the the cor-
responding “Sphere of Influence". This could be considered another
form of "overlapping" block iteration.

D, The Question of Closer Spacings

In all the work described so far, the reader will notice that
we have not discussed clouds with average spacings, d/A, less than
0.5, or in other words, clouds with average dipole densities greater
than 8/13. Here we mean "average density" in the sense of Appendix
I1I, which implies that, for the kind of radially inhomogeneous
clouds we assumed in the majority of cases, the actual dipole
densities in the center of the cloud can be as high as 24/A3.

(For the uniform clouds discussed in the previous section, of
course, the average dipole densities apply throughout the cloud.)
Considering that each dipole is almost A/2 in length these numbers
should convey the impression of a rather tightly packed cloud with
many elements very close at their closest points. It was this
proximity which led us to be cautious and question the validity
of our algorithm for obtaining the currents on dipoles in clouds
with d/x < 0.5 on the average. In our algorithm we assume that
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each wire is divided into two (P=2) equal segments which support
one (P-1) piecewise sinusoidal current mode. This assumption forces
the effects of coupling from nearby wires to reside only in the
complex amplitude of the current mode -~ coupling cannot change the
shape of this single current mode. For two wires which approach
each other very closely, except in very special relative orientations,
we suspect that the true situation demands a change in the shape of
the current distribution as well, meaning that the wires should be
divided into more segments P>2), thereby supporting more than one
piecewise sinusoidal mode tnereby allowing flexibility in current
shape. This is easily done and is provided for in our computer
programs; however, doing so has the undesirable effect of reducing
the number of wires allowed in a cloud, the impedance matrix size
being fixed. We investigated the validity of our two-segment model
with increasing cloud densities in the hope that it would hold up
for denser clouds than those represented by d/x» = 0,5. This section
presents some of our findings.

In order to investigate the question of closer spacings we
calculated spatial average backscattering cross sections using
three variants of the Richmond reaction matching technique:

(1) Two-segment model with 12 point numerical integration. This
variant is the one used for essentially all the results pro-
duced under this contract. In it, each dipole is divided into
two segments supporting piecewise-sinusoidal currents whose
reaction integrals are performed approximately using a 12 point
numerical integration routine,

(2) Two-segment model with exact integration. This variant is
similar to (1) but the reaction integrals are expressed
analytically in closed form and are evaluated exactly.
This method is superior to (1) in precision, is equivalent
to (1) in required computer memory, but takes more time
(about 60% more time, it turns out).

(3) Four-segment model with exact integration. This variant
models each dipole with four segments, thereby allowing
a more precise resolution of the induced current on the
dipole than is possible with the two-segment model. The
currenis on each segment are integrated exactly. This
method is the most precise of the three, but it requires
nine times the computer memory required by the two-segment
models and a great deal more computer time. Thus, whereas
we can solve for 200 dipole clouds with two segment models
we could solve for only 22 dipole clouds using a four-seg-
ment model,
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We assumed inhomogeneous clouds containing N=10 dipoles and cal-
culated the average backscattering cross section of each (averaged
over the usual 512 different aspect angles around a great circle
in V=V and H-H polarizations). Twenty clouds were randomly
generated for each spacing d/» = 0.5 and 0.25 and results for each
were calculated using the three variants discussed above. Typical
results of these calculations are presented in Table 7.

The conclusions derived from Table 7 may be summarized as follows:

(1) For d/A» = 0.5, all three methods give results in close
agreement. Thus, we have some assurance that the model
we have been using heretofore (the two-segment model
with numerical integration) is sufficiently accurate.

(2) For d/x = 0.25, the two-segment model with exact in-
tegration appears to correlate better with the four-
segment model, although the model with numerical in-
tegration really does not perform badly at all. To be
safe, however, we suggest use of the two-segment model
with exact integration for average spacings less than
0.5 at the expense of 60% more computation time.

The three reaction matching variants described above were also
used to generate (using the Wright-Patterson Air Force Base computer)
pattern functions of six inhomogeneous, 50 dipole clouds - three with
d/x = 0,25 and three with d/x = 0.125. The results are plotted in
Figs. 76-93. From these patterns it appears that for the larger
average spacing, a two segment, exact integration model is adequate
to obtain good scattering patterns, but for the smaller average
spacing, even the four segment, exact integration model has not
clearly converged. in its pattern function. We feel that for average
spacings less than 0.25x(i.e., 64/22 density) in the inhomogeneous
clouds assumed here, the algorithms presented in this report are not
reiiable.

One additional study which was made involved the statistics of
the echo from 200 clouds, each composed of only two dipoles randomly
spaced and oriented in the usual manner. From these clouds we
generated histograms of the backscattering cross section at one
look-angle and the backscattering cross section averaged over 512
look angles. For the case where the average spacing wes d/x = 1.43
(Fig. 94 gives the statistical distribution of the spacing), the
relative frequencies of the cross sections averaged over 512 look
angles, with and without coupling, are given in Figs. 95a,b, re-
spectively. Relative frequencies based on 1 look angle are
given in Figs. 96a,b. Note that, although the averages derived
in Figs. 95 and 96 are consistent, the distributions are dif-
ferent, the data for 1 look angle being more spread out. For
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the 512 look angle case, the appearance of an exponential distri«
bution is clearer.

dipoles exhibit similar histograms, as expected with an average

spacing as large as1.43x,

N
d

Cloud
Number

Q=
—

e

inn OWONIITTAWN —

OWOWONOHLEWN —

10 dipoles

1.080880
1.139636
1.124152
1.789712
0.861137
1,293543
0.489466
1.070567
0.902232
0.649599

10 dipoles

0.657790
0.680643
0.680060
0.575100
0.468432
0.835393
0.337658
0.566090
0,681035
0.306615

TABLE 7

Two-Segment Model
Numerical Integration Exact Integration

1.080899
1.243639
1.131229
1.789627
0.861061
1.,444584
0.469862
1.070436
0.901733
0.620836

0.651528
0.741439
0.686915
0.53224

0.476924
0.989235
0.298744
0.565526
0.872147
0,314593
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In both cases, the coupled and uncoupled

Four-Segment Model
Exact Integration

1.068370
1.277114
1.130523
1.745001
0.893994
1,442656
0.460119
1.070025
0.904238
0.617651

0.647247
0.745068
0.669449
0.536879
0.477237
1.001033
0.294067
0.537847

0.851511
0.311840
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Figure 94. Histogram of the center-to-center distances of
random two-dipole clouds. Average spacing
d/) ~ 1.43.

If a very small average spacing is assumed, and accordingly, a
4-segment model with exact integration is used for each dipole, the
curves of Figs. 97-98 result. Figure 97 is the distribution of the
spacing, with the rather small value of average spacing d/x = 0.286.
Fiqures 98a,b present the relative frequencies of the cross sections
averages over 512 look angles with and without coupling, Again, the
exponential trend of the histograms is evident.

From Figs. 95b and 98b, for the two dipoles uncoupled, we note
that for far spacings, the average echo is about 2<oy> or about 0.35)2,
whereas for close spacing the average echo exceeds this {~0.4722).
This is expected because for such a close average spacing the two
dipoles cannot be excited incoherently and their echo therefore lies
above that ‘or totally incoherent scatterers. This effect for two
dipoles variously spaced is shown in Fig. 99. The 2<0q¢> law does not :
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